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Summary. The theoretical formalism of solid-state spin crossover taking into account many-body

interactions and ordering has been extended to the case of 5-centre interactions in a diamond lattice

leading to the splitting of the free energy levels into quintets. Consecutive simplification of the

obtained equations has been achieved for multiplets with regularly varying splittings: the variation

according to the polynomial of the third order corresponds to 5-centre interactions; quadratic and linear

variations yield the formalisms of quaternary and ternary interactions respectively; equidistant multi-

plets correspond to the model of binary interactions. These types of variations have been deduced

from a simple microscopic model of the influence of the external molecule on the considered in-

teraction. Parameters of the developed formalism have been expressed in terms of binary potentials

and relative efficiencies of external molecules. The expressions obtained provided an adequate de-

scription of experimental two-step spin crossover curves. The formalism developed in this way was

found to be similar, but not identical, to the phenomenological description based on the Landau theory.

Odd power terms in composition (not entering the expansion of free energy derived from Landau

theory) were found to be generally non-zero and vital for obtaining adequate descriptions of experi-

mental data.

Keywords. Spin crossover; Many-body interactions; Ordering.

Introduction

Spin crossover equilibrium between HS and LS isomers of transition metal
complexes [1] is a perfect test system for checking theoretical descriptions of
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chemical reactions in the solid state. Spin crossover has been described employ-
ing quantum chemical DFT calculations [2–5] as well as the models of the
Ising-like Hamiltonian [6–9] and regular solution theory [10]. Parameters of
the latter two formalisms have been expressed in terms of the model of a
continuum within the theory of elastic interactions [11, 12]. The latter model
considers microscopic objects (a molecule or a reaction centre) as perturba-
tions within macroscopic elastic media and thus introduces macroscopically
long-range forces between molecules as an initial assumption. A purely pheno-
menological description of spin crossover involving higher order terms in the
expansion of free energy has been derived [13] employing the Landau theory of
phase transitions.

These formalisms successfully predict general features of all known types of
experimental spin crossover transition curves, however they generally fail at the
quantitative parameterisation of the most interesting two-step transitions. As has
been pointed out [14], models of regular solutions and Ising-like Hamiltonian,
‘‘although physically transparent, merely squeeze many competing interactions
into the Procrustes bed of one phenomenological parameter in an oversimplified
model’’.

Quantitative description of the two-step spin crossover has been achieved [15–21]
within two approximations, viz. the model of ternarya interactions [15] and the quasi-
chemical model [17]. The latter is applicable to systems with strong correlations (such
as in polynuclear spin crossover compounds) whereas the former can be applied to
systems of weakly interacting mononuclear spin crossover complexes.

The model of weak interactions is based on taking into account the effects of
two nearest neighbours on the partition function of a given molecule thus leading
to the splitting of free energy levels into triplets. The expressions obtained for the
free energy of a binary reaction mixture contain terms cubic and quadratic with
respect to mol fractions. The cubic term is connected with ternary interactions
characterised by asymmetries of splittings ð�A

1 ;�
B
1 Þ whereas the quadratic term

characterised by main splittings ðDA;DBÞ was assumed to arise from binary in-
teractions. Under simplifying conditions this model can be reduced to that of
the regular solution theory with excess energy being equal to the sum of main
splittings:

�Eex ¼ DA þ DB:

One of the cooperative phenomena observed in spin crossover is the abrupt spin
crossover (sometimes accompanied with hysteresis) that is connected with the
separation of HS-rich and LS-rich phases. According to the model of ternary
interactions [19] abrupt spin crossover can be observed when

�Eex þ�AðBÞ>2RT½

a In our previous publications [15–21] we introduced 3-centre interactions as ‘‘triple interactions’’.

However the term ‘‘ternary interactions’’ seems to be more widely used. Higher order interactions will

be called: ‘‘quaternary’’ (4-centre), quintary (5-centre), and so forth. In order to quantitatively char-

acterise them we have introduced ‘‘primary’’, ‘‘secondary’’, and ‘‘tertiary’’ effects of external mole-

cules on binary interactions
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in which T½ ¼ �E0=�S0 is the temperature of half-conversion. Abrupt spin
crossover thus requires large positive excess energies and=or asymmetries of split-
tings. Another critical phenomenon: the two-step spin crossover is connected with
ordering in a binary mixture, i.e. with the formation of sub-lattices of A and
B isomers. According to the model of ternary interactions ordering occurs [19]
when

�AðBÞ ��Eex>RT½;

i.e. at large negative excess energies. Sharp two-step transitions arise from a com-
bination of negative excess energies and the positive effects of ternary interactions
�AðBÞ. Negative excess energy can be interpreted as arising from the higher sta-
bility of HS-LS pairs compared to HS-HS and LS-LS pairs. Positive asymmetries
arise from either specific binary interactions (such as HS!LS charge transfer) or
specific relationship between ternary potentials [20].

Strictly speaking the formalism of ternary interactions is only applicable to
one-dimensional chains in which ternary and binary interactions alone are impor-
tant. However, the derived equations successfully describe complicated cases of
two-step spin crossover in 2D and 3D systems [15–17]. The reason why this is
possible is not obvious because some one-step transition curves require taking
into account a larger number of neighbours [19]. Corresponding formalism was
derived [19] without taking into account the phenomenon of ordering, i.e. for the
cases of large positive excess energies. Interaction of a given molecule with n
neighbours splits free energy levels into multiplets of the order nþ 1. The pattern
of splittings was characterised by two main splittings ðDAðBÞÞ and 2ðn� 1Þ asym-

metries ð�AðBÞ
i Þ.

This paper presents the derivation of the equation for free energy for systems
with many-body interactions taking into account the phenomenon of ordering.
In order to avoid cumbersome equations the case of tetrahedral environments
will be considered whereas the results for octahedral structures will be given
only in the final form in the Appendix. First a general equation for free energy
in a diamond lattice with ordering will be derived. Then we shall analyse pat-
terns of energy levels arising from taking into account binary, ternary, quatern-
ary, and 5-centre interactions. The corresponding equation for free energy will
be derived and the effect of higher order interactions on the shape of transition
curves of spin crossover will be analysed. Some examples of the fitting of
experimental transition curves to the derived equations will be given thereafter
and eventually we compare the presented formalism with that based on Landau
theory.

Derivation of the Equation for Free Energy

Let us consider a binary mixture of molecules A and B (LS and HS isomers of a
spin crossover compound, respectively) in a diamond lattice with tetrahedral
arrangement of nearest neighbours. In this lattice one can select two sub-lattices
built of � and � centres so that every � centre is surrounded by four � centres and
vice versa; N ¼ NA þ NB centres of such a crystal are then divided into N=2
�-centres and N=2 �-centres. The main simplification of the Bragg-Williams model
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amounts to the suggestion that molecules A and B are randomly distributed among
the � and � centres. The ordering in such a system can be quantitatively charac-
terised by the degree of order, s ¼ 2p� 1, the probability p of a molecule A to get
into an �-centre being p ¼ NAð�Þ=NA.

We assume the molecules to be pseudo-independent, i.e. we suppose that molec-
ular interactions contribute to energy and probably affect vibrational frequencies
but do not change the configurational entropy. Before applying the Bragg-Williams
approximation we consider molecules A and B in ‘proper’ (A in � and B in �) and
‘improper’ (A in � and B in �) centres (Fig. 1; also see in Refs. [15, 18]). The
probabilities (p) to find molecules in these centres and corresponding mol fractions
(X) are given in Table 1.

The contributions of pseudo-independent molecules A and B towards the free
energy are

xAF
A¼XAðp4

AF
A
AAAAþ4p3

ApBF
A
AAABþ6p2

Ap
2
BF

A
AABBþ4pAp

3
BF

A
ABBBþp4

BF
A
BBBBÞ

þXAðp4
AF

A

AAAAþ4p3
ApBF

A

AAABþ6p2
Ap

2
BF

A

AABBþ4pAp
3
BF

A

ABBBþp4
BF

A
BBBBÞ

ð1Þ

xBF
B¼XBðp4

AF
B

AAAAþ4p3
ApBF

B

AAABþ6p2
Ap

2
BF

B

AABBþ4pAp
3
BF

B

ABBBþp4
BF

B
BBBBÞ

þXBðp4
AF

B
AAAAþ4p3

ApBF
B
AAABþ6p2

Ap
2
BF

B
AABBþ4pAp

3
BF

B
ABBBþp4

BF
B
BBBBÞ

ð2Þ

Let us consider the contribution of molecules A, supposing that the nature of the
centre does not affect individual free energies (Bragg-Williams type approximation,
FA
AAAA ¼ F

A

AAAA, FA
AAAB ¼ F

A

AAAB, etc.) then the free energy level is split into a quintet

(FA
AAAA, FA

AAAB, FA
AABB, FA

ABBB, FA
BBBB). By referring all free energies to FA

AAAA we

Fig. 1. Examples of possible configurations around central molecules A and B

Table 1. Probabilities (pA, pB) to find molecules A and B in �- and �-centres and corresponding mol

fractions (XA, XB) according to Refs. [15, 18]

pA pB XA XB

�-centre pA ¼ u1 ¼ ð1 þ sÞxA pB ¼ 1 � u1 XA ¼ 1

2
u1 XB ¼ 1

2
ð1 � u1Þ

�-centre pA ¼ u2 ¼ ð1 � sÞxA pB ¼ 1 � u2 XA ¼ 1

2
u2 XB ¼ 1

2
ð1 � u2Þ
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introduce (see Fig. 2 below) individual splittings of the free energy levels JAi :

FA
AAAB ¼ FA

AAAA þ JA1 ; FA
AABB ¼ FA

AAAA þ JA1 þ JA2 ;

FA
ABBB ¼ FA

AAAA þ JA1 þ JA2 þ JA3 ; FA
BBBB ¼ FA

AAAA þ DA

i:e: DA ¼ JA1 þ JA2 þ JA3 þ JA4

ð3Þ

This yields:

xAF
A¼XAF

A
AAAAþ4ðXAp

3
ApBþXAp

3
ApBÞJA1 þ6ðXAp

2
Ap

2
BþXAp

2
Ap

2
BÞðJA1 þ JA2 Þ

þ4ðXApAp
3
BþXApAp

3
BÞðJA1 þ JA2 þJA3 ÞþðXAp

4
BþXAp

4
BÞDA ð4Þ

Expressing the probabilities pA and mol fractions XA in terms of xA and s
according to Table 1 we get:

xAF
A ¼ xAF

A
AAAA þ 4ð1� s2Þx2

Aðð1þ s2Þx2
A � ð1þ 3s2Þx3

AÞJA1
þ 6ð1� s2Þx2

AðxA � 2ð1þ s2Þx2
A þ ð1þ 3s2Þx3

AÞðJA1 þ JA2 Þ
þ 4ð1� s2Þx2

Að1� 3xA þ 3ð1þ s2Þx2
A � ð1þ 3s2Þx3

AÞðJA1 þ JA2 þ JA3 Þ
þ ðxA þ ð1� s2Þx2

Að�4þ 6xA � 4ð1þ s2Þx2
A þ ð1þ 3s2Þx3

AÞÞDA ð5Þ

By introducing small parameters in the form of asymmetries of splittings
�A

i ¼ 4JAi � DA one obtains:

xAF
A ¼ xAF

A
AAAA þ a5x

5
A þ a4x

4
A þ a3x

3
A þ a2x

2
A þ a1xA ð6Þ

a5 ¼ ð1� s2Þð1þ 3s2Þð� 1
2
�A

1 þ 1
2
�A

2 ��A
3 Þ;a4 ¼ ð1� s4Þðþ�A

1 þ 3�A
3 Þ

a3 ¼ ð1� s2Þð� 3
2
�A

1 � 3
2
�A

2 � 3�A
3 Þ;a2 ¼ ð1� s2Þð�A

1 þ�A
2 þ�A

3 �DAÞ
a1 ¼ DA

ð6aÞ

Similarly the contribution of molecules B can be derived as:

xBF
B ¼ xBFB þ b5x

5
A þ b4x

4
A þ b3x

3
A þ b2x

2
A þ b1xA ð7Þ

in which:

b5 ¼ ð1� s2Þð1þ 3s2Þ þ 1
2
�B

1 � 1
2
�B

2 þ�B
3

� �
b4 ¼� 3

2
�B

1 þ 5
2
�B

2 � 2�B
3 þ s2ð�3�B

1 þ 3�B
2 � 6�B

3 Þþ s4 þ 1
2
�B

1 � 3
2
�B

2

� �
b3 ¼þ 5

2
�B

1 � 7
2
�B

2 þ�B
3 þ s2 þ 3

2
�B

1 � 9
2
�B

2 þ 3�B
3

� �
b2 ¼� 5

2
�B

1 þ 3
2
�B

2 �DB þ s2 �1
2
�B

1 þ 3
2
�B

2 þDB

� �
b1 ¼þ�B

1 þDB

�B
i ¼ 4JBi �DB

ð7aÞ

Combining Eqs. (6) and (7) and adding configurational entropy (see Ref. [18]) we
obtain:

F ¼ xAF
A
AAAA þ ð1 � xAÞFB

BBBB þ c5x
5
A þ c4x

4
A þ c3x

3
A þ c2x

2
A þ c1xA

þ 1
2
NkT ½u1 ln u1 þ ð1 � u1Þ lnð1 � u1Þ þ u2 ln u2 þ ð1 � u2Þ lnð1 � u2Þ� ð8Þ
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in which:

c5 ¼ þð1 � s2Þð1 þ 3s2Þ �1
2
�A

1 þ 1
2
�A

2 ��A
3 þ 1

2
�B

1 � 1
2
�B

2 þ�B
3

� �
c4 ¼ �A

1 þ 3�A
3 � 3

2
�B

1 þ 5
2
�B

2 � 2�B
3 þ s2ð�3�B

1 þ 3�B
2 � 6�B

3 Þ
þ s4 ��A

1 � 3�A
3 þ 1

2
�B

1 � 3
2
�B

2

� �
c3 ¼ �3

2
�A

1 � 3
2
�A

2 � 3�A
3 þ 5

2
�B

1 � 7
2
�B

2 þ�B
3

þ þ3
2
�A

1 þ 3
2
�A

2 þ 3�A
3 þ 3

2
�B

1 � 9
2
�B

2 þ 3�B
3

� �
s2

c2 ¼ �A
1 þ�A

2 þ�A
3 � 5

2
�B

1 þ 3
2
�B

2 � DB � DA

þ DB þ DA ��A
1 ��A

2 ��A
3 � 1

2
�B

1 þ 3
2
�B

2

� �
s2

c1 ¼ �B
1 þ DA þ DB

ð8aÞ

This equation represents an expansion of free energy into a series of powers of
xA:

F ¼ A5x
5
A þ A4x

4
A þ A3x

3
A þ A2x

2
A þ A1xA þ A0

þ 1
2
NkT ½u1 ln u1 þ ð1 � u1Þ lnð1 � u1Þ þ u2 ln u2 þ ð1 � u2Þ lnð1 � u2Þ� ð9Þ

in which the coefficients Ai are functions of asymmetries �A
i , �B

i , main split-
tings, DA, DB, and even powers of the degree of order s. Although Eq. (8) can
be directly employed in practical simulations, it contains too many adjustable
parameters (main splittings and asymmetries) that are not independent. Using
asymmetries as formal parameters is also inconvenient because by setting the
highest order asymmetry to zero does not cancel the contribution of the highest
order interactionsb. The relationship between asymmetries of different orders
will be found in the next section by considering a physical model of many-body
interactions.

Effects of Many-Body Interactions

Assuming (for simplicity) the variations of vibrational frequencies, available
volume, and electronic degeneracy under the influence of environment to be neg-
ligibly small, then we can calculate parameters of Eq. (8) via the energies of the
central molecule in given surroundings. This can be done employing binary and
many-body potentials, the latter describing deviations of these energies from the
sum of binary interactions of the central molecule with its nearest neighbours.
Splittings of energy levels for the considered case of tetrahedral environment
can be written as (see Fig. 2):

JA1 ¼ EA
AAAB � EA

AAAA ¼ ’AB � ’AA þ  A
AAAB �  A

AAAA ð10Þ

JA2 ¼ EA
AABB � EA

AAAB ¼ ’AB � ’AA þ  A
AABB �  A

AAAB ð10aÞ

JA3 ¼ EA
ABBB � EA

AABB ¼ ’AB � ’AA þ  A
ABBB �  A

AABB ð10bÞ

b The advantage of the model of ternary interactions is that it employs one type of asymmetry; setting

it to zero does cancel the contribution of ternary interactions
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JA4 ¼ EA
BBBB � EA

ABBB ¼ ’AB � ’AA þ  A
BBBB �  A

ABBB ð10cÞ

DA ¼ EA
BBBB � EA

AAAA ¼ 4’AB � 4’AA þ  A
BBBB �  A

AAAA ð10dÞ
in which ’ are binary and  are many-body potentials. Relevant asymmetries are:

�A
1 ¼ 4JA1 � DA ¼ þ4 A

AAAB � 3 A
AAAA �  A

BBBB ð11Þ

�A
2 ¼ 4JA2 � DA ¼ þ4 A

AABB � 4 A
AAAB �  A

BBBB þ  A
AAAA ð11aÞ

�A
3 ¼ 4JA3 � DA ¼ þ4 A

ABBB � 4 A
AABB �  A

BBBB þ  A
AAAA ð11bÞ

A similar set of equations can be written for energy levels of the central mole-
cule B. These equations show that whereas asymmetries depend purely on the
strength of many-body interactions the excess energy �Eex ¼ DA þ DB contains
contributions from both binary and many-body potentials. As has been shown in
Refs. [15, 19] a system with purely binary interactions yields free energy multiplets
with equal individual splittings (i.e. with zero asymmetries �

AðBÞ
i ¼ 0). Taking into

account ternary and higher order interactions apparently yields some other regular
relationship between unequal splittings (Fig. 2). This relationship can be found by
supposing that many-body interactions are perturbations of binary potentials.

Ternary Interactions

Let us suppose that the many-body potential arises from effects of third bodies on
all pair interactions (Fig. 3):

 
AðBÞ
AxB4�x

¼
X
k 6¼j

X
j

"kij ð12Þ

in which "kij defines the effect of the ‘atom’ k on the ‘bond’ ij.

Fig. 2. Transformation of equidistant quintets as a result of taking into account many-body interactions
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There are 12 such ‘‘primary’’ many-body effects per tetrahedron (Fig. 3)
belonging to four types (Table 2) that can be represented as fractions ð�kÞ of the
corresponding binary potential:

"AAA ¼ �A’AA; "AAB ¼ �A’AB; "BAA ¼ �B’AA; "BAB ¼ �B’AB ð13Þ
Due to the high symmetry of a perfect tetrahedron (Fig. 3) all homogeneous

effects can be assumed to be identical in all environments irrespective their com-
position: e.g. the effect "AAB can be assumed to be the same in configurations
A(AAAB), A(AABB) and A(ABBB)c.

According to Table 2, the splittings in multiplets are:

DA ¼ EA
BBBB � EA

AAAA ¼ 4’AB � 4’AA þ 12ð"BAB � "AAAÞ ð14Þ

Table 2. Energy levels of a molecule (A) in a tetrahedral environment in terms of binary potentials

(’ij) and three-centre effects "kij

"AAA "AAB "BAA "BAB

EA
AAAA ¼ 4’AAþ

12 0 0 0

EA
AAAB ¼ 3’AA þ ’ABþ

6 3 3 0

EA
AABB ¼ 2’AA þ 2’ABþ

2 4 4 2

EA
ABBB ¼ ’AA þ 3’ABþ

0 3 3 6

EA
BBBB ¼ 4’ABþ

0 0 0 12

Fig. 3. A model of many-body interactions arising from the effect of the third body

c In a square-planar configuration one has to distinguish cis- and trans-effects having different

magnitudes and probabilities. However, the main results obtained for tetrahedral structures also hold

for square-planar ones (see Appendix A1)
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JA4 ¼ EA
BBBB � EA

ABBB ¼ ’AB � ’AA � 3"AAB � 3"BAA þ 6"BAB ð14aÞ
JA3 ¼ EA

ABBB � EA
AABB ¼ þ’AB � ’AA � 2"AAA � "AAB � "BAA þ 4"BAB ð14bÞ

JA2 ¼ EA
AABB � EA

AAAB ¼ ’AB � ’AA � 4"AAA þ "AAB þ "BAA þ 2"BAB ð14cÞ
JA1 ¼ EA

AAAB � EA
AAAA ¼ ’AB � ’AA � 6"AAA þ 3"AAB þ 3"BAA ð14dÞ

All splittings are unequal but finite differences of the first order are constant:

dA1 ¼ JA2 � JA1 ¼ JA3 � JA2 ¼ JA4 � JA3 ¼ 2ð"AAA � "AAB � "BAA þ "BABÞ ð15Þ

Or, in terms of �k and ’ij:

dA1 ¼ 2ð�A � �BÞð’AA � ’ABÞ ð15aÞ
Finite differences of second and third orders are zero and therefore the variation

of splittings in such quintets is linear. Similar expressions can be derived for the
molecule B. Individual splittings can then be written as:

J
AðBÞ
i ¼ J

AðBÞ
i�1 þ �

AðBÞ
1 ¼ J

AðBÞ
1 þ ði� 1Þ�AðBÞ1 ð16Þ

in which the increments �
AðBÞ
1 are:

�A1 ¼ 2ð�A � �BÞð’AA � ’ABÞ ð17Þ

�B1 ¼ 2ð�A � �BÞð’AB � ’BBÞ ð18Þ

The excess energy Eex ¼ DA þ DB can also be written as a function of binary
potentials and effects of third bodies:

�Eex ¼ DB þ DA

¼ 4ð2’AB � ’BB � ’AAÞ þ 12ð�A’AB � �B’BB þ �B’AB � �A’AAÞ ð19Þ

The asymmetries �
AðBÞ
i in a quintet with linearly varying J

AðBÞ
i are given by:

�
AðBÞ
i ¼ 4J

AðBÞ
i � DAðBÞ ð20Þ

�
AðBÞ
i ¼ ð�10 þ 4iÞ�AðBÞ1 ð21Þ

i.e.

�
AðBÞ
1 ¼ �6�

AðBÞ
1 ; �

AðBÞ
2 ¼ �2�

AðBÞ
1 ; �

AðBÞ
3 ¼ þ2�

AðBÞ
1 ð22Þ

This linear relationship between Ji drastically simplifies the expression for free
energy (Eq. (8)), it becomes:

F ¼ xAF
A
AAAA þ ð1� xAÞFB

BBBB þ c3x
3
A þ c2x

2
A þ c1xA þ 1

2
NkT ½u1 lnu1

þ ð1� u1Þ lnð1� u1Þ þ u2 lnu2 þ ð1� u2Þ lnð1� u2Þ� ð23Þ

in which:

c3 ¼ 6ð�A1 � �B1 Þð1 � s2Þ; c2 ¼ 12�B1 � 6�A1 � DB � DA þ ð6�A1 þ DA þ DBÞs2;

c1 ¼ DA þ DB � 6�B1 ð23aÞ
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As expected, this equation is equivalent to that derived from a simplified model
of interactions with two neighbours [19]:

F ¼ þxAFAAA þ ð1 � xAÞFBBB � x3
Að1 � s2Þ½�A

1 ��B
1 �

þ x2
A½ð1 � s2Þðð�A

1 ��B
1 Þ � ð�B

1 þ DA þ DBÞÞ � 2s2�B
1 �

þ xAðDA þ DB þ�B
1 Þ þ 1

2
NkT ½u1 ln u1 þ ð1 � u1Þ lnð1 � u1Þ

þ u2 ln u2 þ ð1 � u2Þ lnð1 � u2Þ� ð24Þ

Coefficients of Eq. (23) can be directly written in terms of ’AA, ’BB, ’AB, �A and
�B as:

c3 ¼ 12ð�A ��BÞð’AA þ’BB � 2’ABÞð1� s2Þ
c2 ¼�4ð2’AB �’BB �’AAÞð1� s2Þð1þ 3�BÞ þ 24ð�A ��BÞð’AB �’BBÞ
c1 ¼ 4ð2’AB �’BB �’AAÞ þ 12½�Að’BB �’AAÞ þ 2�Bð’AB �’BBÞ�

ð25Þ

Species in equilibrium (HS and LS molecules) are very similar therefore the
magnitudes of �A and �B should not be very different. One can thus assume
j�Aj � j�Bj. However, at the complete equality �A ¼ �B the highest order term
in Eq. (25) disappears: primary effects of molecules A and B compensate each
other. On the other hand when signs of these effects are opposite (�B � ��A,
‘‘anti-compensation’’) the coefficient of the highest order term in Eq. (25) is max-
imal. Therefore the condition �B ¼ ��A can be used as a regularisation boundary
for systems with pronounced effects of many-body interactions.

The number of adjustable parameters can be further reduced by making some
assumption concerning binary potentials. One of the homo-molecular potentials
can be fixed at some feasible value (e.g. ’BB ¼ 12 kJ=mol [20]). The energy of
hetero-molecular interactions can be computed according to a modified Berthelot
rule:

’AB ¼ �ð1 þ �Þð’AA’BBÞ
1
2 ð26Þ

Table 3. Non-ideality parameters computed from the effects of third molecules on binary interactions

in the approximation �B ¼ ��A; ’BB ¼ �12 kJ=mol

’AA � ’BB

kJ=mol

�A �Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

�Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

� ¼ �0:03 � ¼ þ0:03

�4.0 0.040 6.394 �2.457 �1.383 �0.257 �1.659 �2.181

�4.0 0.000 4.474 0.000 0.000 �2.177 0.000 0.000

�4.0 �0.040 2.554 2.457 1.383 �4.097 1.659 2.181

0.0 0.040 2.880 �0.346 0.346 �2.880 0.346 �0.346

0.0 0.000 2.880 0.000 0.000 �2.880 0.000 0.000

0.0 �0.040 2.880 0.346 �0.346 �2.880 �0.346 0.346

4.0 0.04 2.048 1.444 2.396 �2.655 2.008 1.832

4.0 0.000 3.968 0.000 0.000 �0.735 0.000 0.000

4.0 �0.040 5.888 �1.444 �2.396 1.185 �2.008 �1.832
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in which � accounts for specific stabilisation=destabilisation of HS-LS pairs [20].
This leaves us three adjustable non-ideality parameters: ’AA, �, and �A, that can be
reliably estimated from experimental two-step spin crossover curves (similarly to
�A, �B, and �Eex; [15, 16, 19]). Employing �A ¼ ��B and varying ’AA and �
at fixed ’BB one obtains a wide variety of combinations of positive and nega-
tive excess energies with positive and negative asymmetries (Table 3, Fig. 4). In
agreement with some experimental estimates [15, 19] the values of �A1 and �B1 are

close to each other but not exactly equal. The combination of negative �A1 � �B1 and
negative excess energies required for the simulation of sharp two-step transition
curves can be achieved at ’AA � ’BB>0 as well as at ’AA � ’BB<0; however the
ratio �A1=�

B
1 in these two cases is different, making the choice of parameters more

definite (see also later).

Quaternary Interactions

Quaternary interactions can be represented as effects of the ðl 6¼ kÞ-th particle on
effects of the k-th particle on the neighbouring bond (Fig. 5, Table 4).

These ‘‘secondary’’ effects can be denoted as "
lðkÞ
ij , for example, "

AðBÞ
AA signifies

the contribution towards the many-body potential arising from the particle A chan-
ging the effect "BAA:

 ¼
X
k 6¼j

X
j

"kij þ
X
l 6¼k

X
k 6¼j

X
j

"
lðkÞ
ij ð28Þ

Fig. 4. Typical dependencies of non-ideality parameters on relative effects of third bodies (�A,

�B¼��A) for different �’ ¼ ’AA � ’BB and deviations from Berthelot’s rule, �; thick lines (1)

refer to �Eex, and thin lines refer to �1
A (2) and �1

B (3)

Fig. 5. Secondary effects of molecules on molecular interactions
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Secondary effects "
lðkÞ
ij can be represented as fractions ð�Þ of primary effects:

"
lðkÞ
ij ¼ �l"kij ¼ �l�k’ij ð29Þ

There are 36 such secondary effects per tetrahedron, belonging to 8 types
(Table 4). Computations according to this scheme yield unequal splittings J1 6¼
J2 6¼ J3 6¼ J4 and non-zero differences of the second order. Third order differences
are zero, manifesting the parabolic variation of splittings:

J
AðBÞ
i ¼ J

AðBÞ
1 þ ði� 1Þ�AðBÞ1 þ ði� 1Þ2�

AðBÞ
2 ð30Þ

in which:

�A1 ¼ ð�A��BÞð’AA�’ABÞð2� 3ð�B��AÞÞþ 2�A½�Að7’AA� 4’ABÞ
��Bð4’AA�’ABÞ�� 2�B½�Að5’AA��B�A2’ABÞ��Bð2’AAþ’ABÞ� ð31Þ

�B1 ¼ ð�B � �AÞð’BB � ’ABÞð2 � 3ð�A � �BÞÞ þ 2�B½�Bð7’BB � 4’ABÞ
� �Að4’BB � ’ABÞ� � 2�A½�Bð5’BB � 2’ABÞ � �Að2’BB þ ’ABÞ� ð32Þ

�A2 ¼ 3ð�B � �AÞð�A � �BÞð’AA � ’ABÞ ð33Þ

�B2 ¼ 3ð�B � �AÞð�A � �BÞð’BB � ’ABÞ ð34Þ
The asymmetries and main splittings can then be derived in terms of �

AðBÞ
1 and

�
AðBÞ
2 as:

DAðBÞ ¼ 4J
AðBÞ
1 þ 6�

AðBÞ
1 þ 14�

AðBÞ
2 ð35Þ

�
AðBÞ
i ¼ �10 �

AðBÞ
1 þ �

AðBÞ
2

� �
þ 4i �

AðBÞ
1 � 2�

AðBÞ
2

� �
þ 4i2�

AðBÞ
2 ð36Þ

Table 4. Energy levels of a molecule (A) in a tetrahedral environment in terms of binary potentials

(’ij) three-centre (primary) effects "kij, and four-centre (secondary) effects "
lðkÞ
ij

"AAA "AAB "BAA "BAB "
AðAÞ
AA "

AðAÞ
AB "

AðBÞ
AA "

AðBÞ
AB "

BðAÞ
AA "

BðAÞ
AB "

BðBÞ
AA "

BðBÞ
AB

EA
AAAA ¼ 4’AAþ 12 0 0 0 36 0 0 0 0 0 0 0

EA
AAAB ¼ 3’AA þ ’ABþ 6 3 3 0 12 6 9 0 6 3 0 0

EA
AABB ¼ 2’AA þ 2’ABþ 2 4 4 2 2 4 8 4 4 8 4 2

EA
ABBB ¼ ’AA þ 3’ABþ 0 3 3 6 0 0 3 6 0 9 6 12

EA
BBBB ¼ 4’ABþ 0 0 0 12 0 0 0 0 0 0 0 36

JA1 ¼ ’AB � ’AAþ �6 þ3 þ3 0 �24 þ6 þ9 0 þ6 þ3 0 0

JA2 ¼ ’AB � ’AAþ �4 þ1 þ1 þ2 �10 �2 �1 þ4 �2 þ5 þ4 þ2

JA3 ¼ ’AB � ’AAþ �2 �1 �1 þ4 �2 �4 �5 þ2 �4 þ1 þ2 þ10

JA4 ¼ ’AB � ’AAþ 0 �3 �3 þ6 0 0 �3 �6 0 �9 �6 þ24

d1J43¼ J4� J3¼ þ2 �2 �2 þ2 þ2 þ4 þ2 �8 þ4 �10 �8 þ14

d1J32¼ J3� J2¼ þ2 �2 �2 þ2 þ8 �2 �4 �2 �2 �4 �2 þ8

d1J21¼ J2� J1¼ þ2 �2 �2 þ2 þ14 �8 �10 þ4 �8 þ2 þ4 þ2

d2J43¼ d1J43� d1J32¼ 0 0 0 0 �6 þ6 þ6 �6 þ6 �6 �6 þ6

d2J23¼ d1J32� d1J21¼ 0 0 0 0 �6 þ6 þ6 �6 þ6 �6 �6 þ6
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i.e.:

�
AðBÞ
1 ¼ �6�

AðBÞ
1 � 14�

AðBÞ
2 ; �

AðBÞ
2 ¼ �2�

AðBÞ
1 � 10�

AðBÞ
2 ;

�
AðBÞ
3 ¼ þ2�

AðBÞ
1 þ 2�

AðBÞ
2

ð37Þ

Employing Eqs. (31)–(34) one obtains:

DA ¼ 4’AB � 4’AA þ 12½��A’AAð1 þ 3�AÞ þ �B’ABð1 þ 3�BÞ� ð38Þ

DB ¼ 4’AB � 4’BB þ 12½��B’BBð1 þ 3�BÞ þ �A’ABð1 þ 3�AÞ� ð39Þ

DA þ DB ¼ 8’AB � 4’AA � 4’BB � 12½�Að1 þ 3�AÞð’AA � ’ABÞ
� �Bð1 þ 3�BÞð’AB � ’BBÞ� ð40Þ

The parabolic relationship between splittings, Eq. (30), significantly simplifies
Eq. (8) to yield:

F ¼ xAF
A
AAAA þ ð1� xAÞFB

BBBB þ c4x
4
A þ c3x

3
A þ c2x

2
A þ c1xA

þ 1
2
NkT ½u1 lnu1 þ ð1� u1Þ lnð1� u1Þ þ u2 lnu2 þ ð1� u2Þ lnð1� u2Þ� ð41Þ

in which:

c4 ¼�8ð�A2 þ �B2 Þð1� s4Þ
c3 ¼ 6ð�A1 � �B1 þ5ð�A2 � �B2 ÞÞð1� s2Þþ32�B2

c2 ¼ð�6ð�A1 � �B1 Þ�22ð�A2 � �B2 Þ�DB�DAÞð1� s2Þþð14�B2 þ6�B1 Þð1þ s2Þ�16�B2

c1 ¼DAþDB�6�B1 �14�B2

ð41aÞ
The coefficient of the highest order term depends solely on �

AðBÞ
2 , hence

(according to Eqs. (33) and (34)) on quaternary interactions alone. These param-
eters however enter lower order terms and therefore in order to get zero con-
tribution of ternary interactions both �1 and �2 must be zero. This is a reasonable
condition because it is difficult to imagine a situation when interactions of the 4-th
order exist but ternary interactions are absent. Parameters � can be considered as
rationalised asymmetries of splittings.

Similarly to the case of primary effects we must distinguish the cases of com-
pensation ð�A ¼ �BÞ and anti-compensation ð�A ¼ ��BÞ of quaternary interac-
tions (Eqs. (33) and (34). In the first instance the highest order term disappears,
whereas in the second case it is maximal. The magnitude of the total relative effect
of quaternary interactions can hardly be larger than that of ternary interactions;
taking into account the ratio of primary and secondary effects per tetrahedron
(12:36) one can assume j�j�j 1

3
�j. To a first approximation ternary and quaternary

interactions can thus be characterised by one parameter �A together with regular-
isation bounds: �B ¼ ��A, �A ¼ � 1

3
�A, �B ¼ ��A.

A wide spectrum of non-ideality parameters can be obtained from various
combinations of �A, �’ ¼ ’AA � ’BB and deviations ð�Þ from the Berthelot rule,
(see Tables 5 and 6). When �B 6¼ �A but �B ¼ �A secondary effects are compen-
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sated and finite differences of second order are zero and hence �
AðBÞ
2 ¼ 0. However,

secondary effects contribute towards �1 and �Eex making their dependencies on �
parabolic (Fig. 6) and not linear as when � ¼ 0 (Fig. 4).

A similar situation arises when primary effects are compensated ð�A ¼ �BÞ but
secondary are not ð�B ¼ ��AÞ. Complete compensation, �A ¼ �B and �A ¼ �B,
yields the approximation of binary interactions (�1 ¼ 0, �2 ¼ 0). Non-zero � and �
in such a case contribute insignificantly towards �Eex.

Table 5. Non-ideality parameters computed for a system with anti-compensated primary and compensated

secondary effects: �A¼��B¼ 3�A, �B¼�A, ’BB ¼ �12 kJ=mol, �’ ¼ ’AA � ’BB; due to compensation

�
AðBÞ
2 ¼ 0

�’

kJ=mol

� �Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

�Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

�Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

�¼�0.03 �¼þ0.03 �¼ 0.0

�4.0 0.04 7.316 �3.636 �2.047 0.665 �2.455 �3.228 3.990 �3.046 �2.638

0.000 4.474 0.000 0.000 �2.177 0.000 0.000 1.149 0.000 0.000

�0.040 3.476 1.278 0.719 �3.175 0.863 1.134 0.150 1.070 0.927

0.0 0.040 2.880 �0.511 0.511 �2.880 0.511 �0.511 0.000 0.000 0.000

0.000 2.880 0.000 0.000 �2.880 0.000 0.000 0.000 0.000 0.000

�0.040 2.880 0.180 �0.180 �2.880 �0.180 0.180 0.000 0.000 0.000

4.0 0.040 1.126 2.137 3.546 �3.577 2.972 2.711 �1.225 2.555 3.129

0.000 3.968 0.000 0.000 �0.735 0.000 0.000 1.616 0.000 0.000

�0.040 4.966 �0.751 �1.246 0.263 �1.044 �0.953 2.615 �0.898 �1.099

Table 6. Non-ideality parameters computed for a system with anti-compensated primary and secondary effects:

�A¼��B, �B¼��A ¼ 1
3
�A, ’BB ¼ �12 kJ=mol, �’ ¼ ’AA � ’BB

�’ � �Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

2�A2
kJ=mol

2�B2
kJ=mol

�Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

2�A2
kJ=mol

2�B2
kJ=mol

� ¼ �0:02; �B ¼ ��A � ¼ þ0:02; �B ¼ ��A

�4.0 0.014 4.062 �2.893 �1.707 0.046 �0.030 �0.404 �2.644 �1.831 0.035 �0.040

0.000 3.366 0.000 0.000 0.000 0.000 �1.068 0.000 0.000 0.000 0.000

�0.014 2.718 �1.266 �0.646 0.046 �0.030 �1.748 �1.390 �0.397 0.035 �0.040

0.0 0.014 1.934 �1.462 �1.301 0.005 0.005 �1.934 �1.247 �1.408 �0.005 �0.005

0.000 1.920 0.000 0.000 0.000 0.000 �1.920 0.000 0.000 0.000 0.000

�0.014 1.934 �1.301 �1.462 0.005 0.005 �1.934 �1.408 �1.247 �0.005 �0.005

4.0 0.014 2.534 �0.184 �0.820 �0.030 0.045 �0.623 �0.008 �0.907 �0.038 0.038

0.000 3.184 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000

�0.014 3.878 �1.261 �2.431 �0.030 0.045 0.721 �1.348 �2.255 �0.038 0.038

�B¼ �A

�4.0 �0.014 2.807 0.677 0.441 0.000 0.000 �1.627 0.522 0.596 0.000 0.000

0.000 3.366 0.000 0.000 0.000 0.000 �1.068 0.000 0.000 0.000 0.000

0.014 4.1507 �0.9500 �0.6198 0.0000 0.0000 �0.283 �0.732 �0.837 0.000 0.000
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Non-zero second order differences (quadratic variations of splittings) appear
when both primary and secondary effects are anti-compensated (Table 6) giving
rise to considerable asymmetries. Corresponding dependencies of �1 and �2 on �
are shown in Figs. 7 and 8.

Arbitrary zeroing of �2 visibly changes the shape of a transition curve (compare
Fig. 9A and B) but does not alter the nature of the transition (two-step spin cross-
over with sharp steps). Much larger effects are produced when zero values of �2 are
achieved by the compensation �A ¼ �B: this affects not only �2 but also changes
�Eex and �1.

The last three rows in Table 6 show non-ideality parameters computed similarly
to the first three rows but with compensated �. The values of �Eex, and �

AðBÞ
1 in

these two cases are considerably different (especially at �¼þ0.02). This leads to a
striking difference in the shape of transition curves shown in Fig. 9A and C. The
model of ternary interactions thus implicitly represents a considerable part of the
effects of quaternary interactions.

Fig. 6. Dependencies of non-ideality parameters on relative many-centre effects (�A, �B¼��A,

�’ ¼ ’AA � ’BB; � is the deviation from Berthelot’s rule); secondary effects are non-zero

(�A ¼ 1
3
�A) but compensated (�B ¼ �A) leading to �2

AðBÞ ¼ 0; thick lines (1) refer to �Eex, thin

lines refer to �1
A (2) and �1

B (3)

Fig. 7. Dependencies of non-ideality parameters on relative effects of the third bodies (�A); both

primary and secondary effects are anti-compensated (�B ¼ ��A, �B ¼ ��A ¼ � 1
3
�A); thick lines

(1) refer to �Eex, thin lines refer to �1
A (2) and �1

B (3)
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A similar analysis can be performed for the case of the cubic variation of
splittings that arises from 5-centre interactions considered as tertiary effects

"
mðlðkÞÞ
ij (see Appendix A2). The equation for free energy contains an expansion

over the powers of xA up to the 5-th power

F ¼ xAF
A
AAAA þ ð1� xAÞFB

BBBB þ c5x
5
A þ c4x

4
A þ c3x

3
A þ c2x

2
A þ c1xA

þ 1
2
NkT ½u1 lnu1 þ ð1� u1Þ lnð1� u1Þ þ u2 lnu2 þ ð1� u2Þ lnð1� u2Þ� ð42Þ

in which:

c5 ¼ ð1� s2Þð1þ 3s2Þ
�
þ6�A3 � 6�B3

�
c4 ¼�8�A2 � 48�A3 � 8�B2 � 18�B3 þ 36�B3 s

2 þ
�
8�A2 þ 48�A3 þ 8�B2 þ 30�B3

�
s4

Fig. 8. Dependencies of second-order non-ideality parameters �A2 (1) and �B2 (2) on relative effects of

the third bodies (�A); both primary and secondary effects are anti-compensated (�B ¼ ��A,

�B ¼ ��A ¼ � 1
3
�A)

Fig. 9. Transition curves of a hypothetical system characterised by �E0¼ 7 kJ=mol, T1=2¼ 120 K;

graph A corresponds to �Eex¼�0.404 kJ=mol, 6�A1 ¼ �2:644 kJ=mol, 6�B1 ¼ �1:831 kJ=mol,

2�A2 ¼ 0:035 kJ=mol, and 2�B2 ¼ �0:04 kJ=mol (first row of Table 6 for �¼þ0.02); graph B was

computed for the same set of parameters save �A2 ¼ �B2 ¼ 0; graph C was obtained with

�Eex¼�0.283 kJ=mol, �A1 ¼ �0:732 kJ=mol, �B1 ¼ �0:837 kJ=mol, and �A2 ¼ �B2 ¼ 0 arising from

compensation of secondary effects (last row in Table 6)
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c3 ¼ 6�A1 þ 30�A2 þ 114�A3 � 6�B1 þ 2�B2 þ 18�B3

þ
�
6�B1 þ 30�B2 þ 78�B3 � 6�A1 � 30�A2 � 114�A3

�
s2

c2 ¼ 12�B1 þ 20�B2 þ 42�B3 � 6�A1 � 22�A2 � 72�A3 �DA�DB

þ
�
6�A1 þ 22�A2 þ 72�A3 � 8�B2 � 30�B3 þDAþDB

�
s2

c1 ¼�6�B1 � 14�B2 � 36�B3 þDAþDB

ð42aÞ

Five-centre interactions are formally characterised by the rationalised asym-
metries of the third order

�
�
AðBÞ
3

�
. The latter can be computed for known binary

potentials, deviations from Berthelot’s rule, and the relative primary, secondary,
and tertiary effects (�, �, and �). However the effect of taking into account 5-centre
interactions on the shape of spin crossover transition curves is smaller than that of
the quaternary interactions. In the regressional analysis of experimental transition
curves it is therefore sufficient to limit the expansion of free energy to the fourth
power of xA.

Fitting of Experimental Data

Recently a systematic study of spin crossover in a series of solvates [Fe(2-
pic)3]Cl2solv (2-pic¼ 2-picolylamine, solv¼MeOH, EtOH, allyl alcohol, n-PrOH,
iso-PrOH, t-BuOH) has been reported (Fig. 10) [22]. Variation of solvating mole-
cule causes a spectacular change from a gradual transition in the MeOH solvate to a
sharp two-step spin crossover in the EtOH solvate, poorly defined two-step spin
crossover in the allyl alcohol solvate, complicated curve with several steps (appar-
ently arising from minor structural transitions) in the iso-PrOH solvate, and no
transition at all (complexes remaining high-spin down to 4 K) in the n-PrOH and
t-BuOH solvates. Nevertheless the crystal structures of all these compounds at
200 K have been found to be astonishingly similar.

Two major factors control the variations of spin-crossover behaviour in this
series, first of all the ligand-field strength. In the solid state it is not a property
of a ligand molecule but depends strongly on the metal-to-ligand distance (as has

Fig. 10. Experimental transition curves of spin crossover in [Fe(2-pic)3]Cl2solv [22] (solv¼MeOH

(A), EtOH (B), and allyl alcohol (C)) approximated by the model of ternary interactions; dashed

lines represent the degree of order
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been recently emphasized by A. Hauser [23]) controlled not so much by the metal-
ligand interaction as by details of the crystal structure reflecting the balance of all
forces acting between all particles constituting a crystal. Small changes in the geo-
metry considerably affect the effective ligand-field strength (10Dq being propor-
tional to r�6 or r�5 [23]). Therefore it is not entirely unexpected that solvent
molecules, although residing in the second coordination sphere, change the mag-
netic behaviour.

Another factor is the variation of binary and many-centre interactions be-
tween complexes in equilibrium. Solvent molecules being on the line of inter-
action of metal centres affect, to a considerable extent, both repulsive and
attractive parts of binary potentials. They also participate in hydrogen bonding
and this changes parameters of binary interactions between neighbouring mole-
cules. This brings about a variation of the contribution of many-centre molecular
interactions towards the lattice energy, and hence non-ideality terms in the
derived equations. Fitting the transition curves of MeOH, EtOH, and allyl alcohol
solvates according to the derived equations allowed us to determine the extent of
this variation. We did not analyse the curve of the iso-PrOH solvate because
according to Ref. [22] this compound undergoes a structural transition that af-
fects the transition curve.

The regression of these transition curves easily converges when analysed in
terms of rational asymmetries (�

AðBÞ
i ), �Eex, and T½¼�E0=�S0 (the values of �E0

were fixed according to the calorimetric data). Direct fitting in terms of ’AA, �A,
�A, �A (with regularisation of conditions corresponding to anti-compensation), �,
and T½ was also successful in several cases, however, in general, it required a very
precise initial guess and did not converge smoothly. We performed therefore para-
meterisation in terms of �Eex and rationalised asymmetries whereas the values of
�A, �A, �A, ’AA, and � have been obtained from estimates of �

AðBÞ
1 , �

AðBÞ
2 , �

AðBÞ
3 , and

�Eex employing a simple optimisation procedure according to the relationships
presented in the previous section and carried out in Microsoft ExcelTM worksheets.

Table 7. Estimates of parameters of Eqs. (23) and (41) obtained by regression of experimental transition curves [22] of spin

crossover in [Fe(2-pic)3]Cl2solv (solv¼MeOH, EtOH, allyl-OH, T1=2 ¼ �E0=�S0)

100�yx �E0

kJ=mol

T1=2

K

�Eex

kJ=mol

6�A1
kJ=mol

6�B1
kJ=mol

2�A2
kJ=mol

6�B2
kJ=mol

The model of binary interactions

1 MeOH 1.33 8.8 152.9 � 0.3 0.29 � 0.04 0 0 0 0

The model of ternary interactions

2 MeOH 1.12 8.8 152.1 � 0.3 0.310 � 0.04 0.19 � 0.05 �0.19 0 0

3 EtOH 2.14 6.14 115.3 � 0.2 �0.32 � 0.01 �1.65 � 0.05 �2.28 � 0.01 0 0

4 Allyl-OH 1.97 6.14 116.7 � 0.5 �0.89 � 0.04 �0.47 � 0.12 �2.22 � 0.06 0 0

The model of quaternary interactions

5 EtOH 2.04 6.14 115.6 � 0.3 �0.30 � 0.03 �1.61 � 0.29 �2.36 � 0.01 �0.007 � 0.038 0.012 � 0.004

6 Allyl-OH 1.69 6.14 117.0 � 0.7 �0.09 � 0.13 �4.09 � 0.45 �0.02 � 0.34 0.55 � 0.06 �0.239 � 0.026
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A smooth curve of nearly gradual transition in the MeOH derivative cannot
yield a large number of non-ideality parameters: it is practically adequately
(100�yx¼ 1.32, Table 7) described by the model of binary interactions with small
positive excess energy �Eex¼þ0.29� 0.04 kJ=mol. This parameter can arise from
a number of combinations of microscopic parameters, e.g. zero or compensated �,
�, and � along with zero or non-zero �. For example it can be assumed that
’AA�’BB¼�1.967 kJ=mol whereas ’AB follows the Berthelot rule (�¼ 0),
many-body interactions being zero. Another possibility is that ’AA�’BB¼ 0 but
HS–LS pairs are destabilised (�¼�0.031). Only a slightly better description is
obtained within the model of ternary interactions using regularisation bounds:
�B1 ¼��B1 (second row in Table 7, Fig. 11A). These estimates can be explained
as arising from destabilisation of HS–LS pairs (�¼�0.0032) and considerable
anti-compensated primary effects �A¼�0.2, �B¼þ0.2 at zero difference of bin-
ary potentials (’AA�’BB¼ 0).

The curve of the EtOH solvate has been adequately described within the model
of ternary interactions. Employing a fixed value of the enthalpy of transition
�E0¼ 6.14 kJ=mol (calorimetric data [24]) well defined estimates of �Eex, �

A
1 ,

and �B1 have been obtained (row 3 in Table 7; Fig. 10B). These estimates can be
represented as arising from positive anti-compensated �A¼ 0.046, �B¼�0.046,
stabilisation of HS-LS pairs (�¼þ0.029), and considerable difference of AA and
BB potentials (’AA�’BB¼�3.51 kJ=mol). The contribution of ternary interac-
tions thus amounts to ca. �¼ 0.04 of the contribution of binary interactions. This
is in the agreement with the established views on the relative role of binary and
many-body molecular interactions [25]. A slightly better description can be ob-
tained within the model of quaternary interactions (non-zero �

AðBÞ
2 , Table 7, row 5).

Estimates of �Eex, �
A
1 , and �B1 are not much different from those obtained with

zero �
AðBÞ
2 . Corresponding �A are smaller than in the model of ternary interactions

whereas negative �’ are larger (�A¼þ0.036, �B¼�0.036; �A¼�0.0003, �B¼
þ0.0003; �¼ 0.0378; ’AA�’BB ¼�5.234).

The curve of the allyl alcohol solvate can be described employing models of
ternary and quaternary interactions (rows 4 and 6 in Table 7). In the absence of
calorimetric data on this compound it was assumed that �E0¼ 6.14 kJ=mol as in
the case of EtOH solvate. Within the model of ternary interactions (Table 7, row 4,
Fig. 10C) obtained estimates correspond to the stabilisation of HS-LS pairs and
small negative difference of binary potentials (�A¼þ0.13, �B¼�0.13, �¼þ0.023,
’AA�’BB¼�0.86 kJ=mol). The model of quaternary interactions yields a slightly
better accuracy (row 6 of Table 7) and estimates that imply a destabilisation of
HS-LS pairs and a large difference of AA and BB potentials (�A¼�0.1,
�B¼þ0.1; �A¼�0.0037, �B¼þ0.0037; �¼�0.045; ’AA�’BB¼�7.2 kJ=mol).
Microscopic interpretations of estimates obtained in the models of ternary and
quaternary interactions are thus different; however errors of regression are too
close for a reliable decision concerning the most probable model. According to
Occam’s principle the model of ternary interactions is preferable.

Indeed the model of ternary interactions seems to be the most versatile: it
describes the whole set of analysed data. Estimates of �A obtained within this
model regularly increase in the series of MeOH, EtOH, and allyl alcohol sol-
vates. The stabilisation of HS-LS pairs (�) and the difference of AA and BB
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potential vary unsystematically however within a feasible range. Probably the
choice of the fixed value of the enthalpy of transition for the allyl-OH solvate
was not correct.

Comparison with the Formalism Based on Landau Theory

Landau theory allows one to derive phenomenological formalisms describing pro-
cesses involving phase transitions without having recourse to molecular models.
Being applied to the solid-state spin crossover this theory yielded [13] an expression
for free energy similar but not identical to that of the model of ternary interactions
[15]. The model based on Landau theory predicts the general features of experi-
mental two-step transition curves – however it fails to produce a quantitative param-
eterisation of experimental data whereas the essentially microscopic model of
ternary interactions [15] provides for an adequate description yielding well-defined
estimates of parameters. It is therefore of interest to compare these two formalisms.

The models employ different variables: the model of many-body interactions
uses the composition (xA) and the degree of order (s) whereas the model based on
Landau theory employs order parameters x and y connected with the composition
and the degree of order as:

x ¼ NHS � NLS

NHS þ NLS

¼ xB � xA ¼ 1 � 2xA; hence: xA ¼ 1
2
ð1 � xÞ ð43Þ

y ¼ NA
HS � NB

HS

NHS þ NLS

¼ XB � XB ¼ sxA ð44Þ

The free energy of the model of ternary interactions (Eq. (23)) can be written
(omitting for simplicity the mixing entropy) as:

F ¼ A0 þ A1xA þ A20x
2
A þ A3x

3
A þ A22s

2x2
A � A3s

2x3
A ð45Þ

in which:

A0 ¼ FB
BBBB; A1 ¼ �6�B þ DA þ DB ��F0;

A20 ¼ �6�A þ 12�B � DB � DA; A22 ¼ 6�A þ DA þ DB; A3 ¼ 6�A � 6�B
ð46Þ

By substituting xA and s according to Eqs. (43) and (44) one obtains:

F ¼ �0 þ �1xþ �2x
2 þ �3x

3 þ �2y
2 þ �21y

2x ð47Þ
in which:

�0 ¼ A0 þ 1
2
A1 þ 1

4
A20 þ 1

8
A3; �1 ¼�1

2
A1 � 1

2
A20 � 3

8
A3; �2 ¼ 1

4
A20 þ 3

8
A3;

�3 ¼�1
8
A3; �2 ¼ A22 � 1

2
A3; �21 ¼ 1

2
A3y

2
ð48Þ

Expressing coefficients Aij in terms of �
AðBÞ
1 and DA(B) according to Eq. (46) yields:

�0 ¼ FB
BBBBþ 1

4
ðDAþDBÞ� 1

2
�F0 � 3

4

�
�A1 þ �B1

�
; �1 ¼ 3

4

�
�A1 � �B1

�
þ 1

2
�F0

�2 ¼ 3
4

�
�A1 þ �B1

�
� 1

4
ðDBþDAÞ; �3 ¼�3

4

�
6�A1 � �B1

�
�2 ¼DAþDB þ 3

�
�A1 þ �B1

�
; �21 ¼ 3

�
�A1 � �B1

� ð49Þ
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Rationalised asymmetries (and hence the coefficients in Eq. (47)) can be repre-
sented via many-centre effects and molecular potentials as described earlier, i.e.
interpreted microscopically. Compared to the free energy derived from Landau
theory [13]:

F ¼ �0 þ �2x
2 þ �4x

4 þ �2y
2 þ �4y

4 þ �21y
2xþ �22y

2x2 ð50Þ
Equation (47) additionally contains linear and cubic terms in x but lacks the fourth-
order terms in x and y as well as the bi-quadratic coupling term �22y

2x2.
Higher order terms can be introduced by considering higher order molecular

interactions. For example the model of quaternary interactions (Eq. (41)) yields:

F ¼ �0 þ �1xþ �2x
2 þ �3x

3 þ �4x
4 þ �2y

2 þ �4y
4 þ �21y

2x ð51Þ
in which:

�0 ¼ FB þ 1
4
ðDA þ DBÞ � 1

2
�F0 � 3

4

�
�A1 þ �B1

�
� 9

4

�
�A2 þ �B2

�
ð52Þ

�1 ¼ 3
4

�
�A1 � �B1

�
þ 7

4

�
�A2 � �B2

�
þ 1

2
�F0 ð53Þ

�2 ¼ 3
4

�
�A1 þ �B1

�
þ 11

4

�
�A2 þ �B2

�
� 1

4
ðDA þ DBÞ ð54Þ

�3 ¼ �3
4

�
�A1 � �B1

�
� 7

4

�
�A2 � �B2

�
ð55Þ

�4 ¼ �1
2

�
�A2 þ �B2

�
ð56Þ

�2 ¼ þ3
�
�A1 þ �B1

�
þ 7
�
�A2 þ �B2

�
þ DA þ DB ð57Þ

�4 ¼ 8
�
�A2 þ �B2

�
þ 39

�
�A3 þ �B3

�
ð58Þ

�21 ¼ 3
�
�A1 � �B1

�
þ 15

�
�A2 � �B2

�
ð59Þ

Taking into account quaternary interactions thus gives rise to the fourth-order
term in x. However it does not yield the bi-quadratic coupling term. An actual
microscopic model of molecular interactions thus defines the rules of introducing
new terms into a polynomial expansion of free energy.

The bi-quadratic coupling term appears when 5-centre interactions are taken
into account. When free energy (Eq. (42)) is written employing variables x and y, it
contains all terms present in the formal expansion of the model based on Landau
theory [13] as well as additional terms with odd powers of x including two higher-
order coupling terms:

F ¼ �0 þ �1xþ �2x
2 þ �3x

3 þ �4x
4 þ �5x

5 þ �2y
2 þ �4y

4

þ �21y
2xþ �22y

2x2 þ �32y
2x3 þ �41y

4x ð60Þ

in which:

�0 ¼ FB þ 1
4
ðDA þ DBÞ � 1

2
�F0 � 3

4

�
�A1 þ �B1

�
� 9

4

�
�A2 þ �B2

�
� 105

16

�
�A3 þ �B3

�
ð61Þ

�1 ¼ 3
4

�
�A1 � �B1

�
þ 7

4

�
�A2 � �B2

�
þ 69

16

�
�A3 � �B3

�
þ 1

2
�F0 ð62Þ
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�2 ¼ 3
4

�
�A1 þ �B1

�
þ 11

4

�
�A2 þ �B2

�
þ 69

8

�
�A3 þ �B3

�
� 1

4
ðDA þ DBÞ ð63Þ

�3 ¼ �3
4

�
�A1 � �B1

�
� 7

4

�
�A2 � �B2

�
� 33

8

�
�A3 � �B3

�
ð64Þ

�4 ¼ �1
2

�
�A2 þ �B2

�
� 33

16

�
�A3 þ �B3

�
ð65Þ

�5 ¼ � 3
16
ð�A3 � �B3 Þ ð66Þ

�2 ¼ 3
�
�A1 þ �B1

�
þ 7
�
�A2 þ �B2

�
þ 15

�
�A3 þ �B3

�
þ 3

2

�
�A3 þ �B3

�
þ DA þ DB ð67Þ

�4 ¼ 8
�
�A2 þ �B2

�
þ 39

�
�A3 þ �B3

�
ð68Þ

�21 ¼ 3
�
�A1 � �B1

�
þ 15

�
�A2 � �B2

�
þ 105

2

�
�A3 � �B3

�
ð69Þ

�22 ¼ 18
4

�
�A3 þ �B3

�
ð70Þ

�23 ¼ �3
2

�
�A3 � �B3

�
ð71Þ

�41 ¼ 9
�
�A3 � �B3

�
ð72Þ

This means that increasing the number of terms reflects taking into account
higher order interactions. However new terms appear in a certain order defined by
the actual model of interactions.

Odd power terms that distinguish the microscopic model developed above
are vital for adequate description of ‘difficult’ two-step spin crossover transi-
tion curves [19], such as that of [Fe(2-pic)3]Cl2EtOH, Fig. 10B. Odd power
terms disappear when uneven rationalised asymmetries are pair-wise equal
�Ai ¼ �Bi . According to Eqs. (17)–(19) and (31) this is only possible when ’AB¼
1
2
(’AAþ’BB), i.e. in a very special case in which contributions from binary inter-

actions are compensated: both the excess energy and asymmetries arise from
ternary interactions:

�A1 ¼ �B1 ¼ ð�A � �BÞð’AA � ’BBÞ ð73Þ

DB þ DA ¼ �6ð�A � �BÞð’AA � ’BBÞ ¼ �6�
AðBÞ
1 ð74Þ

Negative excess energy in this case is coupled to small positive �
AðBÞ
1 (i.e.

negative �
AðBÞ
1 ), which excludes the possibility of a two-step spin crossover. Micro-

scopic interpretation of the formal expansion of free energy thus shows the impor-
tance of the odd-power terms.

Employing the order parameters x and y as main variables provides for certain
mathematical simplicity: all coefficients of expansion are functions of differences
and sums of rationalised asymmetries (see Eqs. (51)–(59) and (60)–(72)). However
these variables are not independent and although the derivation of equations is
more complicated when using xA and s, the formulation of the condition of the
minimum of free energy is considerably simplified for these independent and phy-
sically transparent variables.
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Conclusions

In this paper we have extended the earlier developed formalism describing non-
ideality in binary molecular mixtures on the basis of the model of pseudo-
independent molecules experiencing the effects from molecules in their nearest
surrounding to systems with ordering and 5-centre molecular interactions.

Free energy of a molecule in this model is split into a quintet characterised by
main splittings (DA, DB) and asymmetries (�

AðBÞ
1 , �

AðBÞ
2 , and (�

AðBÞ
3 ). The expression

for free energy contains terms up to the 5-th order in the composition (xA) and 4-th
order in the degree of order. This formalism is simplified in the cases of regular
multiplets. Equidistant multiplets correspond to the model of binary interactions
whereas multiplets with linearly varying splittings yield equations identical with
those of the earlier developed model of ternary interactions. The models of quater-
nary and 5-centre interactions were obtained as special cases of splittings varying
according to the polynomials of second and third order. These cases can be con-
sidered as representing different distributions of the density of states: higher order
interactions correspond to progressively uneven distributions.

A new set of parameters (rationalised asymmetries of splittings �) has been
introduced that provided for the separation of the effects of interactions of different
orders. These parameters have been microscopically interpreted employing a sim-
ple physical model representing ternary interactions as effects of the third molecule
on a binary interaction; quaternary interactions were considered as effects of the
fourth (external) molecule on a ternary interaction and so forth. This allowed us to
represent free energy in terms of binary molecular potentials and relative efficien-
cies (�, �, and �) of ternary, quaternary, and 5-centre interactions. By employing
certain regularisation bounds, workable formalisms have been developed providing
for regressional analysis of experimental data.

Simulations have shown that the reduction of a chosen model to that of the lower
order of interactions can be achieved at either zero (�¼ 0, �¼ 0, �¼ 0) or compen-
sated (�A¼�B, �A¼ �B, �A¼ �B) effects. It was found that higher order interactions
directly contribute to terms formally arising from lower-order interactions. Both com-
pensated and non-compensated coefficients � and � considerably affect the terms
arising from ternary interactions. At the same time higher order terms arising from
non-compensated � and � are not very large and although they change to some extent
the shape of transition curve they do not change its nature. This fact explains the
general applicability of the model of ternary interactions in the description of two-step
transition curves. It was also found that many-centre interactions affect the excess
energy (earlier considered as reflecting the contribution of binary interactions alone).
Many-body interactions contribute several percent of the energy of binary interactions.
They strongly affect, however, the shape of the transition curves of spin crossover.

The developed formalism has been compared to that based on the Landau theory
[11]. Landau theory considers ordering as a structural transition whereas spin-cross-
over in systems without ordering can be treated as an iso-structural transition. In our
model the degree of order (s) is considered as a thermodynamic coordinate that
indeed may have two values at a given temperature indicative of a phase transition.
Furthermore, odd and even centres in the considered case of a diamond lattice form
sublattices of a symmetry different from the initial one (hexagonal and diamond
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lattices, respectively). Being preferentially filled by HS and LS molecules due to the
strong hetero-molecular interaction these sublattices form a new crystal structure.

When expressed via the same variables these two formalisms yield similar, but
not identical, expansions of free energy in powers of order parameters (x¼ 1� 2xA
and y¼ sxA used in Ref. [13]). The model described in the present paper yields
even- and odd-power terms in x, the latter being avoided in the model based on
Landau theory. According to microscopic interpretation, odd-power terms can
indeed be zero (at ’AB¼’AAþ 1

2
’BB). However in such a case negative excess

energies are coupled with negative asymmetries making the two-step spin cross-
over impossible. The odd-power terms are vital for obtaining adequate descrip-
tions of a number of two-step transition curves.

Methods

Experimental data on spin crossover have been read from graphs in PDF files of
published papers available on the Internet. Theoretical transition curves have been
simulated by solving systems of equations derived from the condition of the mini-
mum of free energy (@F=@xA ¼ 0 and @F=@s ¼ 0, see Refs. [15–17]). Non-linear
regression has been performed employing a multipurpose regression program sup-
plied with the monograph [26].

Appendices

Primary Effects in Square-Planar Molecular Environment

In this configuration one has to distinguish cis- and trans-effects also taking into account different

probabilities of some molecular arrangements (Table A1). Irrespective of the actual magnitudes of cis-

and trans-effects, finite differences of the first order are identical, i.e. differences of second and higher

orders are zero.

Furthermore the ratio of cis- and trans-contributions is identical for all configurations (2:1,

Table A1) allowing one to employ "kij as a single effective parameter similarly to that employed for

the tetrahedral environment.

Five-Centre Interactions in the Tetrahedral Environment

The cubic variation of splittings:

J
AðBÞ
i ¼ J

AðBÞ
1 þ ði� 1Þ�AðBÞ1 þ ði� 1Þ2�

AðBÞ
2 þ ði� 1Þ3�

AðBÞ
3 ðA1Þ

leads to the following asymmetries:

�
AðBÞ
i ¼�10�

AðBÞ
1 � 10�

AðBÞ
2 � 40�

AðBÞ
3 þ 4i

�
�
AðBÞ
1 � 2�

AðBÞ
2 þ 3�

AðBÞ
3

�
þ 4i2

�
�
AðBÞ
2 � 3�

AðBÞ
3

�
þ 4i3�

AðBÞ
3

ðA2Þ

i.e.:

�
AðBÞ
1 ¼ �6�

AðBÞ
1 � 14�

AðBÞ
2 � 36�

AðBÞ
3 ðA3Þ

�
AðBÞ
2 ¼ �2�

AðBÞ
1 � 10�

AðBÞ
2 � 32�

AðBÞ
3 ðA4Þ

�
AðBÞ
3 ¼ 2�

AðBÞ
1 þ 2�

AðBÞ
2 � 4�

AðBÞ
3 ðA5Þ

The free energy (Eq. (8)) expressed in terms of �
AðBÞ
i contains a term proportional to x5

A hence a

contribution from 5-th order interactions:
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F¼ xAF
A
AAAAþð1� xAÞFB

BBBBþð1� s2Þð1þ3s2Þðþ6�A3 �6�B3 Þx5
A

þ
�8�A2 �48�A3 �8�B2 �18�B3

s2ðþ36�B3 Þ
s4ðþ8�A2 þ48�A3 þ8�B2 þ30�B3 Þ

0
BB@

1
CCAx4

Aþ
þ6�A1 þ30�A2 þ114�A3 �6�B1 þ2�B2 þ18�B3�
�6�A1 �30�A2 �114�A3 þ6�B1 þ30�B2 þ78�B3

�
s2

 !
x3
A

þ
�6�A1 �22�A2 �72�A3 þ12�B1 þ20�B2 þ42�B3 �DA�DB�
þ6�A1 þ22�A2 þ72�A3 �8�B2 �30�B3 þDAþDB

�
s2

 !
x2
A

þ
�
�6�B1 �14�B2 �36�B3 þDAþDB

�
xA

þ 1
2
NkT½u1 lnu1 þð1�u1Þ lnð1�u1Þþu2 lnu2 þð1�u2Þ lnð1�u2Þ�

ðA6Þ

Table A1. Primary effects in a square-planar molecular environment

"Acis

AA "Acis

AB "Bcis

AA "Bcis

AB "Atr

AA "Atr

AB "Btr

AA "Btr

AB

EA
AAAA ¼ 4’AAþ

8 0 0 0 4 0 0 0

EA
AAAB ¼ 3’AA þ ’ABþ

4 2 2 0 2 1 1 0

�4=6

2�4=6 2�4=6 2�4=6 2�4=6 0 2�4=6 2�4=6 0

�2=6

0 4�2=6 4�2=6 0 2�2=6 0 0 2�2=6

E
A

AABB ¼ 2’AA þ 2’ABþ 4=3 8=3 8=3 4=3 2=3 4=3 4=3 2=3

EA
ABBB ¼ ’AA þ 3’ABþ

0 2 2 4 0 1 1 2

EA
BBBB ¼ 4’ABþ

0 0 0 8 0 0 0 4

JA1 ¼ EA
AAAB � EA

AAAA ¼ ’AB � ’AAþ �4 þ2 þ2 0 �2 þ1 þ1 0

JA2 ¼ EA
AABB � EA

AAAB ¼ ’AB � ’AAþ �8=3 þ2=3 þ2=3 þ4=3 �4=3 þ1=3 þ1=3 þ2=3

JA3 ¼ EA
ABBB � EA

AABB ¼ ’AB � ’AAþ �4=3 �2=3 �2=3 þ8=3 �2=3 �1=3 �1=3 þ4=3

JA4 ¼ EA
BBBB � EA

ABBB ¼ ’AB � ’AAþ 0 �2 �2 þ4 0 �1 �1 þ2

d1
21 ¼ JA2 � JA1 ¼ þ4=3 �4=3 �4=3 þ4=3 þ2=3 �2=3 �2=3 þ2=3

d1
32 ¼ JA3 � JA2 ¼ þ4=3 �4=3 �4=3 þ4=3 þ2=3 �2=3 �2=3 þ2=3

d1
43 ¼ JA4 � JA3 ¼ þ4=3 �4=3 �4=3 þ4=3 þ2=3 �2=3 �2=3 þ2=3
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This form has an advantage that the lower-order parameters (�i) do not enter higher-order terms;

zero value of �3 then means zero contribution from fifth order interactions. In order to get zero

contribution of quaternary interactions both �3 and �2 must be zero, which is reasonable because it

is difficult to imagine a situation when interactions of the 5-th order exist but quaternary interactions

are absent. The physical model of interactions leading to the variation of Ji according to Eq. (A1)

corresponds to the introduction of 5-centre interactions as ternary effects "
mðlðkÞÞ
ij :

 ¼
X
k 6¼j

X
j

"kij þ
X
l 6¼k

X
k 6¼j

X
j

"
lðkÞ
ij þ

X
m 6¼k

X
l 6¼k

X
k 6¼j

X
j

"
mðlðkÞÞ
ij ðA7Þ

Ternary effects can be considered as fractions (�) of secondary effects:

"
mðlðkÞÞ
ij ¼ �ðmÞ�ðlÞ�ðkÞ’ij ðA8Þ

There are 108 such effects per tetrahedron belonging to 16 types (Table A2). Computations

according to this matrix show that non-zero finite differences of third order appear when:

�A 6¼ �B; �A 6¼ �B; �A 6¼ �B ðA9Þ

Regularisation bounds used above can be employed in order to diminish the number of variable

parameters:

�A ¼ ��B; �A ¼ ��B; �A ¼ ��B ðA10Þ

All energies in two quintets (A and B) can thus be defined using 6 parameters: ’AA, ’BB, �A, �A,

�A, and �. Furthermore it can be assumed (as an upper limit of the efficiency of higher order effects)

that �A ¼ 1
3
�A and �A ¼ 1

3
�A. Non-ideality parameters arising from compensated ternary effects

(�B ¼ �A ¼ 1
3
�A at �A ¼ 1

3
�A, �B ¼ ��A, �B ¼ ��B) do not considerably differ from similar para-

meters obtained with �A ¼ �B ¼ 0. The introduction of non-compensated ternary effects �A ¼ 1
3
�A at

�A ¼ 1
3
�A and �B ¼ ��A, �B ¼ ��A, �B ¼ ��A brings about some changes into non-ideality para-

meters; they do not, however, change the type of the expected transition.

The Free Energy of a Binary Mixture in a Simple Cubic Lattice

Similar to the case of the tetrahedral environment, the free energy of a binary mixture of mole-

cules having an octahedral environment can be derived as a function of composition (xA) and degree

Table A2. Numbers of the 5-centre effects "
mðlðkÞÞ
ij contributing to the energy of a molecule (A) in a

tetrahedral environment

Configuration "
AðAðAÞÞ
AA "

AðAðAÞÞ
AB "

AðAðBÞÞ
AA "

AðAðBÞÞ
AB "

AðBðAÞÞ
AA "

AðBðAÞÞ
AB "

AðBðBÞÞ
AA "

AðBðBÞÞ
AB

A(AAAA) 108 0 0 0 0 0 0 0

A(AAAB) 24 12 18 0 18 9 0 0

A(AABB) 2 4 8 4 8 16 8 4

A(ABBB) 0 0 0 0 0 9 6 12

A(BBBB) 0 0 0 0 0 0 0 0

"
BðAðAÞÞ
AA "

BðAðAÞÞ
AB "

BðAðBÞÞ
AA "

BðAðBÞÞ
AB "

BðBðAÞÞ
AA "

BðBðAÞÞ
AB "

BðBðBÞÞ
AA "

BðBðBÞÞ
AB

A(AAAA) 0 0 0 0 0 0 0 0

A(AAAB) 12 6 9 0 0 0 0 0

A(AABB) 4 8 16 8 4 8 4 2

A(ABBB) 0 0 9 18 0 18 12 24

A(BBBB) 0 0 0 0 0 0 0 108
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of order (s):

F ¼ þFB
B6

þ
�
FA
A6

� FB
B6

þ DA þ DB þ 6JB1 � DB

�
xA þ

�
A2 þ B20 þ ðB22 � A2Þs2

�
x2
A

þ
�
A3 þ B30 þ ðB32 � A3Þs2

�
x3
A þ

�
A4 þ B40 þ B42s

2 þ ðB44 � A4Þs4
�
x4
A

þ
�
A5 þ B50 þ ðB52 þ 2A5Þs2 þ ðB54 � A5Þs4

�
x5
A þ

�
A6 þ B60 þ ðB62 þ 5A6Þs2

þ ðB64 � 5A6Þs4 þ ðB66 � A6Þs6
�
x6
A þ ðA7 þ B7Þð1 � s2Þð1 þ 10s2 þ 5s4Þx7

A

þ 1
2
NkT ½u1 ln u1 þ ð1 � u1Þ ln ð1 � u1Þ þ u2 ln u2 þ ð1 � u2Þ ln ð1 � u2Þ� ðA11Þ

in which u1¼ (1þ s)xA, u2¼ (1� s)xA and:

A7 ¼ �2JA1 þ 4JA2 � 11JA3 þ 9JA4 � 6JA5 þ DA

A6 ¼ 6JA1 þ 30JA3 � 30JA4 þ 30JA5 � 6DA

A5 ¼ �15JA1 � 15JA2 � 30JA3 þ 30JA4 � 60JA5 þ 15DA

A4 ¼ 20JA1 þ 20JA2 þ 20JA3 þ 60JA5 � 20DA

A3 ¼ �15JA1 � 15JA2 � 15JA3 � 15JA4 � 30JA5 þ 15DA

A2 ¼ 6JA1 þ 6JA2 þ 6JA3 þ 6JA4 þ 6JA5 � 6DA

B7 ¼ �DB þ 2JB1 � 4JB2 þ 11JB3 � 9JB4 þ 6JB5

B60 ¼ DB � 8JB1 þ 28JB2 � 47JB3 þ 33JB4 � 12JB5

B62 ¼ 15DB � 60JB1 þ 180JB2 � 345JB3 þ 255JB4 � 120JB5

B64 ¼ 15DB � 60JB2 þ 15JB3 þ 15JB4 � 60JB5

B66 ¼ DB þ 4JB1 � 20JB2 þ 25JB3 � 15JB4

B50 ¼ 21JB1 � 69JB2 þ 81JB3 � 39JB4 þ 6JB5

B52 ¼ 90JB1 � 330JB2 þ 450JB3 � 270JB4 þ 60JB5

B54 ¼ �15JB1 þ 15JB2 þ 45JB3 � 75JB4 þ 30JB5

B40 ¼ �35JB1 þ 85JB2 � 65JB3 þ 15JB4

B42 ¼ �90JB1 þ 270JB2 � 270JB3 þ 90JB4

B44 ¼ 5JB1 þ 5JB2 � 25JB3 þ 15JB4

B30 ¼ 35JB1 � 55JB2 þ 20JB3

B32 ¼ 45JB1 � 105JB2 þ 60JB3

B20 ¼ �21JB1 þ 15JB2 þ DB � DB

B22 ¼ �9JB1 þ 15JB2 � DB þ DB

ðA12Þ

When all asymmetries are zero, i.e. when JA1 ¼ JA2 ¼ JA3 ¼ JA4 ¼ JA5 ¼ JA6 ¼ JA7 this equation is

reduced to that of the model of binary interactions:

F ¼ �ðDA þ DBÞð1 � s2Þx2
A þ ðFA

A6
� FB

B6
þ DB þ DAÞxA þ FB

B6

þ 1
2
NkT ½u1 ln u1 þ ð1 � u1Þ lnð1 � u1Þ þ u2 ln u2 þ ð1 � u2Þ lnð1 � u2Þ� ðA13Þ

In the case of a regular septet with linearly varying splittings (Fig. A1) employing the relationships

between J-s given by Eq. (A14) it is possible to transform Eq. (A11) into the form equivalent to that of

the model of ternary interactions (Eq. (A15)).

JAi ¼ JA1 þ ði� 1Þ�1

DA ¼
X6

1

JAi ¼ 6JA1 � �A1

 
6 þ

X6

1

i

!
¼ 6JA1 þ 15�1
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�A
i ¼ 6JAi � DA ¼ ð6i� 21Þ�A1

JA1 ¼ DA

6
� 5

2
�A1 ; �A

1 ¼ �15�A1

JA2 ¼ DA

6
� 3

2
�A1 ; �A

1 ¼ �9�A1

JA3 ¼ DA

6
� 1

2
�A1 ; �A

1 ¼ �3�A1

JA4 ¼ DA

6
þ 1

2
�A1 ; �A

1 ¼ 3�A1

JA5 ¼ DA

6
þ 3

2
�A1 ; �A

1 ¼ 9�A1

JA6 ¼ DA

6
þ 5

2
�A1 ; �A

1 ¼ 15�A1

ðA14Þ

F ¼
15�A1 � 15�B1
�s2
�
15�A1 � 15�B1

�
 !

x3
A þ

�15�A1 þ 15�B1 �
�
�15�B1 þ DA þ DB

�
s2
�
þ15�A1 þ 15�B1 þ

�
�15�B1 þ DA þ DB

��
 !

x2
A

þ
�
�15�B1 þ DB þ DA þ FA

A6
� FB

B6

�
xA þ FB

B6

þ 1
2
NkT ½u1 ln u1 þ ð1 � u1Þ lnð1 � u1Þ þ u2 ln u2 þ ð1 � u2Þ lnð1 � u2Þ� ðA15Þ

Similar to the case of a diamond lattice it is possible to transform Eq. (A11) into an equation with

contributions from binary, ternary, and quaternary interactions by supposing that splittings in a septet

vary according to polynomials of second order. Septets with splittings varying according to the third

order polynomial yield the model of 5-centre interactions and so forth.

This shows that irrespective of the number of nearest neighbours taken into account, the

behaviour of a system can be described by the model of ternary interactions under the condition

that splittings are linearly related. This type of variation corresponds to taking into account

primary effects of molecules on binary interactions. In octahedral configurations one has to

distinguish cis- and trans-effects (Table A3). However the ratio of contributions of cis- and

trans-effects into the splittings of energy levels is constant (see Table A4) allowing one to

employ a single effective parameter. Table A4 shows that taking into account primary effects

leads to constant finite differences of the first order and hence to a septet with linearly varying

splittings.

Fig. A1. Transformation of an equidistant septet into the septet with linearly varying splittings
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Table A3. Primary effects in octahedral environments

"Acis

AA "Acis

AB "Bcis

AA "Bcis

AB "Atr

AA "Atr

AB "Btr

AA "Btr

AB

24 0 0 0 6 0 0 0

16 4 4 0 4 1 1 0

�12=15

10 6 6 2 2 2 2

�3=15

8 8 8 0 4 0 0 2

�8=20

6 6 6 6 0 3 3 0

�12=20

4 8 8 4 2 1 1 2

�12=15

2 6 6 10 0 2 2 2

�3=15

0 8 8 8 2 0 0 4

-

0 4 4 16 0 1 1 4

0 0 0 24 0 0 0 6
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